Coreference Resolution

Different German & English Coreference Resolution Models for Multi-Domain Content Curation Scenarios

Ankit Srivastava, Sabine Weber, Peter Bourgonje, and Georg Rehm

DFKI GmbH – Forschungsbereich Sprachtechnologie, Berlin

GSCL 2017, 14th September, Berlin

GEFÖRDERT VOM

About this Presentation

- Introduction to Coreference Resolution
- Coreference Resolution for English
- Coreference Resolution for German
- Our Approaches: Coref_{rule}, Coref_{stat}, Coref_{proj}
- Coreference Resolution for Digital Curation
- Endpoint

Digitale Kuratierungstechnologien

COREFERENCE RESOLUTION

GSCL 2017 - Coreference for Digital Curation

Source: Coreference Resolution presentation by Shumin Wu and Nicolas Nicolov of J.D. Power and Associates

What is Coreference Resolution?

- Process of identifying all words & phrases in a document that refer to the same entity
- Core of Natural Language Understanding (NLU) since 1960s
- Documents usually contain the full named entity once or a few times. For full NLU, coreference resolution is essential
- Can be meaningfully applied in Question Answering, Named Entity Recognition, Machine Translation, Summarisation

Coreference & Co.

<u>Anaphora</u> *The music was so loud it couldn't be enjoyed.*

<u>Cataphora</u> Despite her difficulty, Wilma came to understand the point.

Split antecedents Carol told Bob to attend the party. They arrived together.

Coreferring noun phrases

Some of our colleagues will help us. These people will earn our trust.

Motivation

- Digital Curation Platform for Knowledge Workers
 - Named Entity Recognition, Entity & Relation Extraction, Translation, Summarisation, Timelining, Clustering
- Benefit from Coreference: Disambiguation
 - Explore tools available for both German & English
 - Build our own... evaluate

Digitale Kuratierungstechnologien

SUMMARY OF APPROACHES

GSCL 2017 - Coreference for Digital Curation

Approaches to Coreference

- 3 Paradigms
 - Rule-based (Heuristics)
 - Machine Learning (Mention-Rank Model)
 - Knowledge-based (Crosslingual Projections)
- Coreference Resolution for English
 - [Raghunathan et al., 2010] [Clark & Manning, 2015 | 2016]
- Coreference Resolution for German
 - [Verseley et al., 2008] [Krug at al., 2015] [Roesiger & Riester, 2015] [Tuggener, 2016]

Evaluation of Coreference

- Benchmarking Shared Tasks on Standard datasets
 - Message Understanding Conference (MUC)
 - Automatic Content Extraction (ACE)
 - Computational Natural Language Learning (CoNLL)
 - Semantic Evaluation (SemEval)
 - Coreference Resolution beyond OntoNotes (CORBON)
- Evaluation Metrics
 - Message Understanding Conference F-measure (MUC6)
 - Bagga, Baldwin, Biermann (B³)
 - Constrained Entity-Alignment F-Measure (CEAF)

Evaluation: MUC-6 F-Measure

Reference:

System output:

b

Count the number of corresponding links between mentions

Precision = 4/5

Recall = 4/6

F-measure = 2* Precision * Recall/(Precision + Recall) = 0.727

GSCL 2017 - Coreference for Digital Curation

Evaluation Metrics Summary

- MUC6 F-measure
 - Ignores single mention entities
 - Potentially biased toward large clusters
 - No one-to-one entity mapping guarantee
- B³
 - Set view of mentions in an entity
 - Based on number of corresponding mentions between entities averaged over total number of mentions
 - Does not provide one-to-one entity mapping
- CEAF
 - One-to-one entity mapping
 - Optimal mapping can be tuned to a different similarity measure

Digitale Kuratierungstechnologien

THREE IMPLEMENTATIONS

Rule-based (Multi-Sieve)

- English version Based on Stanford CoreNLP
 - <u>https://nlp.stanford.edu/software/dcoref.html</u>
- German version: in-house implementation
 - <u>https://github.com/dkt-projekt/e-NLP/ecorenlp/modules</u>
- Idea of an annotation pipeline
 - Sentence splitting, tokenisation, parsing, morphology

- Parse a document
- Get Noun Phrases,
 Pronominal Phrases
- Cluster them via sieve heuristics
- Exact Match: If NPs match each other in a context window of 5 (with stemming), then link them
- "Der Hund" / "Des Hundes"

- linked Models if • appositive or predicative nominative constructs are detected
- Appositive: "Donald Trump, President of USA"

- If head word of two NPs ٠ is they same, are coreferrent
- Some Relaxations and • Rules

Examples of Match Heuristics

- Compatible mentions:
 - Exact string match of capitalized mentions
 "Trump" & "Trump"
 - Exact string match of mentions within a sentence "car" & "car"
 - Acronyms
 "USA" & "United States of America"
 - First person / Second person / Third person pronoun
 "I" & "me", "you" & "yours", "he" & "him", "she" & "her"
- Incompatible mentions:
 - Different acronyms"USA" & "UK"
 - Personal, gender, number disagreement
 "I" & "you", "he" & "she", "car" & "cars"

Evaluation: Sieve Settings

- 1. All Sieves in place
- 2. All mentions but no coreference links
- 3. {1} after deletion of clusters with no mentions
- 4. {1} with insertion of clusters with no mentions added last

System	MUC	B-Cube
Setting 1	54.4	11.2
Setting 2	70.5	23.1
Setting 3	58.9	15.0
Setting 4	56.1	12.0

Statistical (Mention-Ranking)

- Based on Stanford CoreNLP (English & German)
 - English trained and evaluated on CoNLL '11, '12
 - German trained on TüBa/D-Z, evaluated on SemEval '10
- 4 Types of Features learned using Dagger [Ross 2011]
 - Distance
 - Syntactic
 - Semantic
 - Lexical
- Issues in out-of-domain adaptation

Features

- Distance features: the distance between the two mentions in a sentence, number of mentions
- Syntactic features: number of embedded NPs under a mention, Part-Of-Speech tags of the first, last, and head word (based on the German parsing models included in the Stanford CoreNLP (Rafferty and Manning, 2008)
- Semantic features: named entity type, speaker identification
- Lexical Features: the first, last, and head word of the current mention

Projection (Crosslingual)

- Coreference for German based on English models
- Transferring Models Vs Transferring Data
- Corbon 2017 English—German Data

Comparative Evaluation

Englis	h: CoNLL 2	2012	German: S	SemEval 20	010
System	MUC	B-Cube	System	MUC	B-Cube
BART	45.3	64.5	CoRefGer-rule	50.2	63.3
rZu	60.1	58.9	concroser rule	50.2	05.5
ve	49.2	45.3	CoRefGer-stat	40.1	45.3
tistical	56.3	50.4	CoRefGer-proj	35.9	40.3
1	60.0	56.8	I J		

GSCL 2017 - Coreference for Digital Curation

Digitale Kuratierungstechnologien

MULTI DOMAIN CONTENT CURATION SCENARIOS

GSCL 2017 - Coreference for Digital Curation

Curation Case Studies

Corpora	Language	Documents	Words	Domain
Mendelsohn	DE	2,501	699,213	Personal letters
Mendelsohn	EN	295	21,226	Personal letters
Vikings	EN	12	298,577	Wikipedia and E-books
News	DE	1,037	716,885	News articles and summaries

Coreference for Curation

- Applied English & German coreference models on different datasets
- Coref_{rule} outperforms Coref_{stat}, Coref_{proj} in terms of number of mentions

Dataset	SENTS.	WORDS	MENTIONS
Mendelsohn EN	21K	109K	48%
Mendelsohn DE	34K	681K	26%
Vikings EN	39K	310K	49%
News Stories DE	53K	369K	25%

About this Presentation

- Introduction to Coreference Resolution
- Coreference Resolution for English
- Coreference Resolution for German
- Our Approaches: Coref_{rule}, Coref_{stat}, Coref_{proj}
- Coreference Resolution for Digital Curation
- Endpoint

Conclusions

- Performed Coreference Resolution
 - In both English & German
 - On a variety of text types
 - For competing approaches (sieve, mention-rank, projection)
- Successful in coreference resolution for curation datasets such as an archive of letters, research materials for exhibition, news articles & downstream applications
- Currently, best choice is Multi Sieve (Rule-based) approach for out-of-domain processing

Thank You!

Email: ankit.srivastava@dfki.de

GSCL 2017 - Coreference for Digital Curation

Digitale Kuratierungstechnologien

EXTRA SLIDES

GSCL 2017 - Coreference for Digital Curation